
Core Play 2

Erik Bakker - DuSE - 14-6-2012

About me

■ Working at Lunatech in Rotterdam

■ Doing a project with several Play 2.0 apps

■ Co-authoring ‘Play for Scala’

2

Don’t forget to Google for a coupon!

Today’s Topics

■ What is Play 2

■ Requests and responses

■ Iteratees

■ Websockets

■ Hands-on

3

Before we start

■ Clone the repo on http://github.com/eamelink/core-play

■ Run ‘sbt’ in that directory

4

You need SBT 0.11.2. It may work with 0.11.3 if you update project/build.properties
accordingly. If you get errors resolving commons-codec or slf4j, remove ~/.ivy2/cache/
commons-codec and ~/.ivy2/cache/org.slf4j These errors are caused by Play 1, corrupting
your Ivy cache...

http://github.com/eamelink/core-play
http://github.com/eamelink/core-play

5

Part One

What is Play 2

What is Play 2

■ A “Full Stack” web framework

■ Netty server

■ Request router

■ Template engine

■ Compiler

■ Stateless (sort of)

■ You just need a machine with Java

6

Sort of stateless, because we will see how we can keep thousands of connections open.

Play 2 project itself

■ Six Scala SBT sub projects:

■ Anorm

■ Console

■ Play

■ Play-Test

■ SBT-Plugin

■ Templates

7

Play is now just an SBT project. You don’t need to download the distribution, except for easy
debugging, and creating a new application.

Anorm

■ Wrapper for JDBC

■ Works with Strings containing SQL queries

■ Parses results with parser combinators

8

First part very non-Scalaish, second part very Scalaish.

Anorm

9

def spokenLanguages(countryCode: String): Option[SpokenLanguages] = DB.withConnection
{ implicit conn =>
 val languages: List[(String, String)] = SQL(
 """
 select c.name, l.language from Country c
 join CountryLanguage l on l.CountryCode = c.Code
 where c.code = {code};
 """)
 .on("code" -> countryCode)
 .as(str("name") ~ str("language") map (flatten) *)

 languages.headOption.map { f =>
 SpokenLanguages(f._1, languages.map(_._2))
 }
 }

Don’t use Anorm. The reasons for non type safe DSL are not convincing. Squeryl is great,
although it has some limitations. It’s fine to use Squeryl for the majority of your app and do
the few ninja-SQL queries you need with Anorm.

Console

■ Provides the Play ‘new’ command, which copies an
application skeleton to your new app directory

■ Also holds the ASCII art logo:

10

val logo = Colors.yellow(

 """| _ _
 | _ __ | | __ _ _ _| |
 || '_ \| |/ _' | || |_|
 || __/|_|____|__ (_)
 ||_| |__/
 |
 |""".stripMargin) + ("play! " + play.core.PlayVersion.current + ",
 http://www.playframework.org")

http://www.playframework.org
http://www.playframework.org

SBT Plugin

■ Compiles and runs your app

■ Compiles CoffeeScript and LESS to Javascript and CSS,
and also minifies and gzips them

■ Generates ‘dist’ package: a zip file with your app, all
dependencies and a start script.

■ Provides an ‘SBTLink’ to the Play application

■ App can reload themself if the sources changed

11

SBT Plugin

■ Compiles templates and routes

■ From Template and Route syntax to Scala sources

■ From Scala sources to byte code

■ Error positions are mapped back to original source
positions

12

Templates

■ Type-safe scala-like template syntax

13

@(users: Seq[User])

@main("User list") {
 <h1>List of users</h1>

 @for(user <- users) {

	 This user has name @user.name,
 and he is @user.age years old

 }

}

Type signature same as in Scala
Creates an object, with name inferred from template filename

Templates

■ Parsing of the templates is done with parser combinators

14

def parentheses: Parser[String] = {
 "(" ~ (several((parentheses | not(")") ~> any))) ~ commit(")") ^^ {
 case p1 ~ charList ~ p2 => p1 + charList.mkString + p2
 }
}

def expression: Parser[Display] = {
 at ~> commit(positioned(methodCall ^^ { case code => Simple(code) })) ~ several(expressionPart) ^^ {
 case first ~ parts => Display(ScalaExp(first :: parts))
 }
}

Just two examples.

Templates

■ Get compiled into Scala code:

15

object userlist extends BaseScalaTemplate[Html,Format[Html]](HtmlFormat) with Template1[Seq[User],Html] {

 /**/
 def apply/*1.2*/(users: Seq[User]):Html = {
 display {

Seq[Any](format.raw/*1.20*/("""

"""),_display_(Seq[Any](/*3.2*/main("User list")/*3.19*/ {_display_(Seq[Any](format.raw/*3.21*/("""
 <h1>List of users</h1>

 """),_display_(Seq[Any](/*6.4*/for(user <- users) yield /*6.22*/ {_display_(Seq[Any](format.raw/*6.24*/
("""

	 This user has name """),_display_(Seq[Any](/*8.25*/user/*8.29*/.name)),format.raw/*8.34*/(""",
 and he is """),_display_(Seq[Any](/*9.18*/user/*9.22*/.age)),format.raw/*9.26*/(""" years old

 """)))})),format.raw/*11.4*/("""

""")))})))}
 }

Object name from template file name. Apply signature from template signature.
Note the source position annotations. Sequence of ‘Any’, and a _display_ method that knows
how to display those things.

Templates

■ The _display_ method:

16

case class BaseScalaTemplate[T <: Appendable[T], F <: Format[T]](format: F) {

 def _display_(o: Any)(implicit m: Manifest[T]): T = {
 o match {
 case escaped if escaped != null && escaped.getClass == m.erasure =>
 escaped.asInstanceOf[T]
 case () => format.raw("")
 case None => format.raw("")
 case Some(v) => _display_(v)
 case xml: scala.xml.NodeSeq => format.raw(xml.toString)
 case escapeds: TraversableOnce[_] =>
 escapeds.foldLeft(format.raw(""))(_ + _display_(_))
 case escapeds: Array[_] => escapeds.foldLeft(format.raw(""))(_ + _display_(_))
 case string: String => format.escape(string)
 case v if v != null => _display_(v.toString)
 case _ => format.raw("")
 }
 }

 }

Pattern matching on the element. The template gets a “Format” determines by the extension
of the file. In this case, “HtmlFormat”. Takes care of escaping suitable for Html. “XmlFormat”
does escaping for Xml, etcetera.
But are we going to use the template engine? I don’t often do. I build a REST api with Play,
and a Backbone.js app on the frontend.

Play-­‐Test

■ Fake objects

■ FakeRequest

■ FakeApplication

■ FakeHeaders

■ Helpers to check responses

■ Wrapper around Selenium

17

18

Main dish:

Play

Play 2 stats

■ 97 Scala files

■ 10402 lines of code

■ 4823 lines of comment

■ 3182 blank lines

■ + 5222 lines of code for the Java API

■ But we don’t care

19

Compared to 31076 lines of Java for Play 1

What is Play 2

■ An application:

20

object NettyServer

 ...

 def main(args: Array[String]) {
 args.headOption.orElse(
 Option(System.getProperty("user.dir"))).map(
 new File(_)).filter(p => p.exists && p.isDirectory).map { applicationPath =>
 createServer(applicationPath).getOrElse(System.exit(-1))
 }.getOrElse {
 println("Not a valid Play application")
 }
 }
}

Just to show you that Play is an application...

Play and NeBy

■ Play has a built-in HTTP server, Netty:

■ Based on NIO

■ Many connections per thread

■ Highly efficient

21

NIO, introduced in Java 1.4 reached the age of 10 in February this year...

Play’s main philosophies

22

Handle many connections

Process datastreams reactively, one chunk at a time

We want thousands of clients to be connected to our systems. We can send notifications,
streaming data, live updates to our users. Or have them chat.
Often, requests never end. We are continuously streaming data. We don’t want to buffer stuff.

How to handle many connecDons

■ Easy, Netty does it for you

■ Caveat: we can’t use a Netty thread for too long

23

Netty creates a single ‘boss’ thread per port it opens, and handles incoming requests to one
of a pool of ‘worker’ threads.

How to process data stream reacDvely

■ We generally can’t buffer full requests

■ Instead, we work with chunks of data

■ Something produces chunks

■ Something else consumes these chunks

■ In case of HTTP requests, these chunks are Array[Byte],
but the abstraction is useful in general

24

Chunks may be strings, in a one-on-one chat. But it’s likely JSON. Or maybe HTML. Chunks
can be anything, from very low level byte arrays to rich objects.

How to process data stream reacDvely

■ Play ships a library “iteratee”, with immutable
implementations of a consumer and producer

■ Iteratee = Consumer

■ Enumerator = Producer

■ We’ll get back to this later, but remember this

25

Similar to Iteratee in Haskell and Scalaz

26

Part Two

Requests and Responses

27

A web application maps an HTTP request
to an HTTP response

28

In Play, we map a Request[A], with body type A,
to a Result

So, what are the building blocks we use for this in Play?

Requests

■ A Request has a type parameter A, the type of the body

■ An HTML request body is always Array[Byte]

■ So the HTML request body must be parsed into A, where A

■ That is done using a BodyParser[A]

■ A BodyParser[A] constructs an Iteratee[Array[Byte], A]

29

Results

■ Results are constructed from

■ An HTTP status code

■ A body of type T or an Enumerator[T]

■ Implicit parameters Writable[T] and ContentTypeOf[T]

30

AcDons

■ An Action defines how to map an HTTP request to an
HTTP response

■ An Action has two properties:

■ A BodyParser[A]

■ Function from Request[A] to Result

31

How it looks: construcDng results

32

// Creating a result with status code 200 and no body
Status(200)

// Shortcut for the above
Ok

// Adding a non-chunked body
Ok("Hello DUSE!")

// The above is similar to
Ok("Hello DUSE!")(Writeable.wString(Codec.utf_8), ContentTypeOf.contentTypeOf_String(Codec.utf_8))

How it looks: AcDons and using BodyParsers

33

object Requests extends Controller {

 // Default body parser
 def actionOne() = Action { request =>
 Ok("Hello world!")
 }

 // Explicit body parser
 def actionTwo() = Action(parse.json) { request =>
 // We now have request.body of type JsValue
 val json = request.body
 Ok
 }

 // Custom body parser of type BodyParser[Unit]
 def actionThree() = Action(BodyParsers.loggingDiscardingBodyParser) { request =>
 Ok
 }

}

You can find the loggingDiscardingBodyParser in the sample code...

34

But what do we do when the result is really large?

Or when the request is really large?

35

HTTP

HTTP 1.0

■ Connection was closed at the end of the request

■ Content-Length header optional

■ Streaming data without knowing how much it’s going to be
is possible

■ Performance overhead of opening new connections for
every resource

36

If there is no Content-Length header, the request is done when the server closes the
connection.

HTTP 1.1

■ Connection is kept alive after an HTTP request, and reused
for other HTTP requests

■ Without Content-Length header, client doesn’t know when
all data is received

■ Problem when streaming data without known size

37

SoluDon: HTTP Chunked transfer encoding

■ Send a stream of unknown length in chunks

■ Add a size indicator before each chunk

■ When done, send an empty chunk

38

39

HTTP Demo

Do-­‐it-­‐yourself-­‐demo

■ Run the project, and with ‘telnet localhost 9000’, do HTTP
1.0 and 1.1 requests to:

■ /responses/simple-without-header

■ /responses/simple-feeding

■ /responses/chunked-result

40

To make a request, just type: “GET /responses/simple-without-header HTTP/1.0”. Replace
1.0 with 1.1 for an HTTP 1.1 request. May not be according to the specs, but Netty
understands what you mean ;)

41

So we will have to output our large data in chunks

42

Part Three

Iteratees

Iteratee

■ Iteratee[E, A] = Consumer that consumes chunks of type E,
and will eventually produce an A

■ Iteratee is in one of three states

■ Cont (continue, it’s still accepting input)

■ Done

■ Error

43

Actually producing something is optional. Maybe we just want to log something. Or send
something elsewhere. But it may be useful, for example if you stream to a bucket at S3, you
can return the ID of what you just put there.

Iteratee

■ The Done state contains the remaining input, and the result

■ The Cont state contains a continuation, a method that you
can feed a new chunk and it will produce the new Iteratee
state

■ The Error state contains an error string, and the remaining
input

44

Has some similarities to parsers, they also contain not consumed input.

Iteratee

■ An Iteratee[E, A] consumes Input[E], and they can be one
of three input chunks:

■ El[E], a chunk with data

■ Empty, an empty chunk

■ EOF, indicating the end of the stream

45

Example Iteratee

46

def counter[E]: Iteratee[E, Int] = {
 def step(s: Int)(i: Input[E]): Iteratee[E, Int] = i match {
 case Input.EOF => Done(s, Input.EOF)
 case Input.Empty => Cont[E, Int](i => step(s)(i))
 case Input.El(e) => Cont[E, Int](i => step(s + 1)(i))
 }

 Cont[E, Int](i => step(0)(i))
}

Iteratee that counts all chunks it receives, and produces that number. It gets in the ‘Done’
state when it receives an Input.EOF. It starts in the Cont state, with ‘0’ as the internal state.

Provided Iteratees

47

// Consume and concatenate input
val i1 = Iteratee.consume[String]

// Folding iteratee, this one sums the chunks
val i2 = Iteratee.fold(0)((state, chunk: Int) => state + chunk)

// Apply method to each chunk
val i3 = Iteratee.foreach((chunk: Any) => println(chunk))

// Ignore input...
val i4 = Iteratee.ignore

Feeding data into an Iteratee

■ Similar to an Either, an Iteratee can be in one of multiple
states.

■ Use the ‘fold’ method on Iteratee to unify into a single type:

48

trait Iteratee {
 def fold[B](
 done: (A, Input[E]) => Promise[B],
 cont: (Input[E] => Iteratee[E, A]) => Promise[B],
 error: (String, Input[E]) => Promise[B]): Promise[B]
}

So the ‘fold’ method is used by the thing that puts data into the Iteratee.

Feeding data into an Iteratee

49

def feed[E, A](iteratee: Iteratee[E, Int], values: Seq[E]): Promise[Int] = {
 iteratee.fold(
 done = (result, remainingInput) => Promise.pure(result),
 cont = (consumeMethod) => {
 val newIteratee = consumeMethod(values.headOption.map(Input.El(_)).getOrElse(Input.EOF))
 feed(newIteratee, if(values.isEmpty) Nil else values.tail)
 },
 error = (error, remainingInput) => Promise.pure(-1))
}

This is just an example, you generally won’t use fold, but an Enumerator to feed data into an
Iteratee. Also, this thing is recursive, but not tail-recursive so it will break pretty quickly...

Enumerator

■ An Enumerator[E] produces chunks of type E

■ An Enumerator[E] can be applied to an Iteratee[E, A]

■ Enumerators can be composed

■ Some useful Enumerators are provided

50

CreaDng Enumerators

51

// From a set of values
val e1 = Enumerator("Hello! ", "these", "are", "the", "elements")

// From a file
val e2 = Enumerator.fromFile(file)

// An imperative 'PushEnumerator'
val e3 = Enumerator.imperative[String]()
e3.push("Foo")
e3.push("Bar")

// From a callback
val e4 = Enumerator.fromCallback { () =>
 Promise.timeout(Some("Hello!"), 1 seconds)
}

Enumerator composiDon and modificaDon

52

// Interleave
val e5 = e1 interleave e3

// Concatenate
val e6 = e1 andThen e3

// Transform chunks
val e7 = e1.map(_.toInt)

There are aliases for all these composition methods, like >- for interleave (looks like a
zipper).

Enumeratees

■ Enumeratees can transform and adapt streams

■ Can be composed with Enumerators using ‘through’

■ Can be composed with Iteratees using ‘transform’

■ Can be composed with other Enumeratees

■ You can get the original enumerator or iteratee out again

53

Enumeratees

■ Many ways to construct Enumeratees:

■ Enumeratee.filter

■ Enumeratee.map

■ Enumeratee.collect

■ Enumeratee.drop, take, dropwhile, takeWhile

■ Enumeratee.mapInput (map the entire Input[E] object)

54

Iteratees and Enumerators in Play

■ Enumerators

■ To create the body of a Result

■ To create the body of a request to a webservice

■ Iteratees

■ To consume the body of a Request

■ To consume the result of a webservice call

■ Both: for WebSockets (we’ll get to that)

55

They’re not in the default Database API, which is a bit odd

Mini demo

■ Run project, and with ‘telnet localhost 9000’, try while
observing the console:

56

POST /bodyparsers/logging-body-parser HTTP/1.1
Transfer-Encoding: chunked

5
Hello
F
RingRingRingRin
0

The chunk length is hexadecimal. So F = 15 bytes.

57

So, how does the request lifecycle look in Play?

Simplified Request lifecycle

■ A request comes in

■ Single Netty ‘boss’ thread accepts it and hands over to
one of a bunch of Netty ‘worker’ threads

■ Worker thread calls messageReceived(ctx: Context, e:
MessageEvent), we enter Play code

■ A RequestHeader object is created for the request

■ The router is consulted for a matching route and it returns
an Action

58

Action is combination of a function from Request[A] to Response, and a BodyParser[A]

Simplified Request lifecycle

■ In an Akka actor, the BodyParser is applied to the request
headers, which creates an Iteratee that takes Array[Byte]
input and creates an A

■ If the request is not chunked, a single element Enumerator
is created from the Http request body, and applied to the
Iteratee

■ If the request is chunked, all incoming chunks are manually
fed to the Iteratee when they arrive

59

Manual feeding of chunks to the iteratee probably because of performance reasons.

Simplified Request lifecycle

■ When the body parsing Iteratee delivered its A, a
Request[A] object is constructed, and sent to an Akka
actor together with the Action and a Response object.

■ This Response object has a ‘handle’ method, that handles
various Result types that an action can return:

■ SimpleResult

■ ChunkedResult

■ AsyncResult (which wraps a promise of a result)

60

Body can be complete for two reasons: Full Http body is retrieved, or Iteratee reaches ‘Done’
state earlier

Request lifecycle take-­‐away points

■ Routing done with Http request headers

■ Bodyparser created in Akka actor

■ Body fed to bodyparser until done

■ Action method executed in Akka actor

■ Result fed back to Netty

61

Error handling

■ Previous slides were simplified

■ BodyParser[A] does not create Iteratee[Array[Byte], A], but
Iteratee[Array[Byte], Either[Result, A]]

■ This means that the BodyParser can return error responses
directly, without the Action ever being invoked

■ And because it also gets the request headers, it can do
everything it wants with the request!

62

The Either[Result, ...] pattern is used in a lot of places in the Play core.

63

Part 4

WebSockets

Websockets

■ Bi-directional communication

■ Long-living connections

■ “Upgrade” of HTTP protocol

■ Allows servers to push data to clients

■ Multiple messages / frames

64

Upgrade of HTTP means that it will go through most firewalls without problem. Works over
port 80 and 443, same as HTTP and HTTPS

65

WebSockets demo

How it works in Play

■ In a Websocket action, we create

■ An Enumerator, that will produce what we want to send
to the client

■ An Iteratee, that will consume what we receive from the
client

■ We return these, and Play will hook them up to Netty

66

Websockets in Play

67

def logging() = WebSocket.using[String] { request =>
 println("Connected")
 val in = Iteratee.foreach[String] { msg =>
 println(msg)
 }.mapDone { _ =>
 println("Disconnected")
 }

 val out = Enumerator[String]()

 (in, out)
}

def counter() = WebSocket.using[String] { request =>
 var i = 0;
 val out = Enumerator.fromCallback { () =>
 Promise.timeout({ i += 1; Some(i.toString) }, 1 seconds)
 }

 val in = Iteratee.ignore[String]

 (in, out)
}

Websockets in Play

68

// A websocket action that combines echoing and counting using enumerator composition
def echoAndCounter() = WebSocket.using[String] { request =>
 var i = 0;
 val counter = Enumerator.fromCallback { () =>
 Promise.timeout({ i += 1; Some(i.toString) }, 1 seconds)
 }

 val echoer = Enumerator.imperative[String]()
 val in = Iteratee.foreach[String] { msg => echoer.push(msg) }

 (in, echoer >- counter)
}

Here, we see the >- alias for interleave in action.

69

EOF

En of presentation part. Now, the hands-on part follows.

70

Part Four

Hands On

Hands on!

■ Download the sample code from
http://github.com/eamelink/core-play

■ Idea #1:
Build a WebSocket action, and register each connecting
client with an Actor, that sends the load average of the
machine to each client every 3 seconds

■ Idea #2:
Allow users to sign up to multiple data streams (cpu usage,
heap usage) over a single Websocket connection

71

http://github.com/eamelink/core-play
http://github.com/eamelink/core-play

72

Questions, comments?

Twitter: @eamelink

Email: erik@eamelink.net

mailto:erik@eamelink.net
mailto:erik@eamelink.net

